Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Odovtos (En línea) ; 24(1)abr. 2022.
Article in English | LILACS, SaludCR | ID: biblio-1386574

ABSTRACT

Abstract Recently, the 3D spheroid cell culture application has been extensively used in the treatment of bone defects. A wide variety of methodologies have been used, which has made the comparison of results complex. Therefore, this systematic review has two aims: (i) to perform an analysis focused on the role of 3D spheroid cell culture in bone regeneration strategies; and (ii) address the main challenges in clinical application. A search of the following keywords "3D cell culture", "spheroid", and "bone regeneration" was carried out in the PubMed, Scopus, and ScienceDirect databases and limited to the years 2010-2020. Studies were included if their primary objective was the behavior of cell aggregates to formed spheroids structures by different 3D cell culture techniques focused on the regeneration of bone tissue. To address the risk of bias for in vitro studies, the United States national toxicology program tool was applied, and descriptive statistics of the data were performed, with the SPSS V.22 program. A total of 16 studies were included, which met the established criteria corresponding to in vitro and in vitro/in vivo studies; most of these studies used stem cells for the 3D cell spheroids. The most often methods used for the 3D formation were low adherence surface and rotational methods, moreover, mesenchymal stem cells were the cell line most frequently used because of their regenerative potential in the field of bone tissue engineering. Although the advances in research on the potential use of 3D spheroids in bone regeneration have made great strides, the constant innovation in cell spheroid formation methodologies means that clinical application remains in the future as strategy for 3D tissue bioprinting.


Resumen Recientemente, la aplicación del cultivo 3D de esferoides se ha utilizado ampliamente en el tratamiento de defectos óseos. La variedad de metodologías para lograr los cultivos 3D de esferoides ha hecho compleja la comparación de resultados. Por tanto, esta revisión sistemática tiene dos objetivos: (i) realizar un análisis centrado en el papel de los cultivos 3D de esferoides en las estrategias de regeneración ósea; y (ii) abordar los principales desafíos en la aplicación clínica. Se realizó una búsqueda de las siguientes palabras clave "cultivo celular 3D", "esferoide" y "regeneración ósea" en las bases de datos PubMed, Scopus y ScienceDirect y se limitó a los años 2010-2020. Se incluyeron los estudios si su principal objetivo era el comportamiento de agregados celulares para generar las estructuras esferoidales desarrollados por diferentes técnicas de cultivo celular 3D enfocadas a la regeneración del tejido óseo. Para abordar el riesgo de sesgo de los estudios in vitro, se aplicó la herramienta del programa nacional de toxicología de Estados Unidos y se realizaron estadísticas descriptivas de los datos, con el programa SPSS V.22. Se incluyeron un total de 16 estudios, que cumplieron con los criterios establecidos correspondientes a estudios in vitro e in vitro/in vivo; la mayoría de estos estudios utilizaron células troncales para generar los esferoides celulares 3D. Los métodos más utilizados para la formación de los esferoides 3D fueron la superficie de baja adherencia y los métodos de rotación, asimismo, la línea celular de células troncales mesenquimales fueron las más utilizadas debido a su gran potencial regenerativo en el campo de la ingeniería de tejidos óseos. Aunque los avances en la investigación sobre el uso potencial de los cultivos celulares de esferoides 3D en la regeneración ósea han logrado grandes avances, la constante innovación en las metodologías de la generación de esferoides 3D deja claro que la aplicación clínica de estos permanecerá en el futuro como estrategia en la bioimpresión tisular.


Subject(s)
Bone Regeneration , Tissue Engineering , Spheroids, Cellular
2.
Rev. odontol. mex ; 17(3): 152-155, jul.-sept. 2013. ilus, tab
Article in Spanish | LILACS-Express | LILACS | ID: lil-714517

ABSTRACT

La osteocalcina es una proteína no colágena presente en hueso alveolar, cemento radicular y subpoblaciones del ligamento periodontal. Esta proteína juega un papel importante en la biomineralización y en la matriz extracelular regulando la maduración de los cristales de hidroxiapatita y en el reclutamiento de los osteoclastos participando en la remodelación ósea. La remodelación y la nueva formación de tejido periodontal es parte esencial durante los movimientos ortodóncicos, los cuales al aplicar fuerzas causan tensión en las células provocando una adaptación que se traduce en respuestas celulares y moleculares que pueden afectar la matriz extracelular. Por ello, el propósito de esta investigación fue determinar la expresión de la osteocalcina asociada a la remodelación periodontal cuando se aplican fuerzas ortodóncicas. En primeros premolares superiores e inferiores se colocó aparatología fija prescripción Roth 0.022 con un arco NiTi 0.016, la cual se aplicó a todos los dientes de ambas arcadas con excepción de los premolares superiores e inferiores izquierdos. Los premolares sin aparatología (t = 0) y en presencia de aparatología para inducir movimientos ortodóncicos durante 1, 3, 5, 7 y 9 días; fueron extraídos para analizar la expresión de la osteocalcina en la matriz extracelular del ligamento periodontal. Para determinar la expresión temporal y espacial de los mensajeros de la osteocalcina en el ligamento periodontal se llevó a cabo la técnica RT-PCR. La expresión de la osteocalcina en el grupo experimental estuvo presente en todos los días de prueba, sugiriendo que los movimientos ortodónticos generan cambios que son susceptibles en las concentraciones del mensajero de la proteína osteocalcina.


Osteocalcin is a non-collagenous protein located in alveolar bone, root cementum and subpopulations of periodontal ligament cells. This protein plays an important role in the biomineralization process and in the extra-cellular matrix, regulating maturation of hydroxyapatite and osteoclast recruitment which participate in bone remodeling. Periodontal tissue new formation and remodeling is a vital part of the process during orthodontic movements. These movements, when force is exerted, cause tension in the cells, provoking adaptation which results in molecular and cellular responses which, in turn, can affect the extracellular matrix. Due to the aforementioned facts, the aim of the present research was to determine osteocalcin expression associated to periodontal remodeling when orthodontic forces are applied. Roth 0.022 " fixed brackets with a NiTi 0.016" archwire were applied to first upper and lower bicuspids. This was applied to all teeth of both arches except to left lower and upper bicuspids. Bicuspids without brackets (t = 0) as well as with brackets to elicit orthodontic movements during 1, 3, 5, 7 and 9 days were extracted to assess osteocalcin expression in the extra-cellular matrix of the periodontal ligament. The RT-PCR technique was followed to determine temporal and spatial expression of osteocalcin messengers. Osteocalcin expression in the experimental group was present in all test days, suggesting thus the fact that orthodontic movements elicit changes that are susceptible in osteocalcin protein messenger concentrations.

SELECTION OF CITATIONS
SEARCH DETAIL